
Linux

Efficient process management is one of the core skills when working with Linux. The operating
system provides several commands—nohup, nice, bg, fg, and jobs—to control how
processes run, whether in the foreground, background, or with specific priorities. Here’s a
breakdown of each and how to use them.

🔹 1. jobs Command

Theory

●​ The jobs command shows the status of jobs started in the current shell session.
●​ Jobs can be Running, Stopped, or Terminated.
●​ It only tracks jobs launched from that shell (not system-wide like ps).
●​ Lists all jobs started in the current shell session.
●​ Jobs are assigned IDs like [1], [2].

Syntax
jobs [options]

Example
ping google.com &
nano file.txt
jobs

Explanation

1.​ ping google.com & → Runs ping in background (& means background).
2.​ nano file.txt → Opens editor in foreground (blocks the shell).
3.​ jobs → Lists all jobs in that shell.

Output:

[1]+ Running ping google.com &
[2]- Stopped nano file.txt

●​ [1] → Job number
●​ + → Current job (default target for fg/bg)
●​ Running / Stopped → Status
●​ ping google.com → Command

Use Case

●​ To monitor and control multiple processes launched from the same shell.

🔹 2. bg Command

Theory

●​ Used to resume a stopped job in the background.
●​ Jobs paused with CTRL+Z can be restarted with bg.
●​ Resumes a stopped job in the background.
●​ Usage:​

bg %1
●​ This resumes job ID 1 in the background.

Syntax
bg %job_id

Example
sleep 100
CTRL+Z
bg %1

Explanation

1.​ sleep 100 → Command runs for 100 seconds.
2.​ CTRL+Z → Suspends it (status becomes Stopped).
3.​ bg %1 → %1 means job number 1. The job resumes in background.

Use Case

●​ If you accidentally stopped a long-running task but don’t want to keep terminal blocked.

🔹 3. fg Command

Theory

●​ Used to bring a job running in background into foreground.
●​ Useful when you want to interact with it (like editors).

Syntax
fg %job_id

Example
ping google.com &
jobs
fg %1

Explanation

1.​ ping google.com & → Starts in background.
2.​ jobs → Confirms it’s running (%1).
3.​ fg %1 → Brings it to foreground, so output floods your screen.

Use Case

●​ Switching between background/foreground for multitasking.

🔹 4. nice Command

Theory

●​ Controls process scheduling priority.
●​ Lower nice value = higher priority.
●​ Sets the scheduling priority of a process.
●​ Nice values range from -20 (highest priority) to 19 (lowest priority). Default = 0.
●​ Run a command with a specific nice value:

●​ Change the nice value of a running process:​
renice -n -5 -p <pid>

Syntax
nice -n <value> command

Example
nice -n 10 gzip largefile.iso

Explanation

1.​ nice → Run command with a specified nice value.
2.​ -n 10 → Nice value of 10 (lower priority).
3.​ gzip largefile.iso → Command being run.

So Linux gives CPU time to more important tasks before compressing the file.

Use Case

●​ Run heavy background jobs (compression, backups) with lower priority so they don’t
slow down other processes.

🔹 5. renice Command

Theory

●​ Changes priority of already running process.

Syntax
renice -n <new_value> -p <pid>

Example
ps -ef | grep myscript.sh
renice -n -5 -p 12345

Explanation

1.​ ps -ef | grep myscript.sh → Find process ID (say 12345).
2.​ renice -n -5 -p 12345 → Increase priority (-5 is higher priority).

Use Case

●​ Increase priority of critical processes or reduce priority of non-urgent tasks.

🔹 6. nohup Command

Theory

●​ Stands for No Hang Up.
●​ Prevents a process from being killed when the terminal is closed.
●​ Default output is written to nohup.out unless redirected.
●​ Runs a process immune to terminal hangups, meaning it will continue running even if

you log out or close the terminal.
●​ Basic usage:​

nohup ./script.sh &
●​ Redirect output to a file:​

nohup ./script.sh > output.log 2>&1 &
●​ Useful for long-running processes like backups, servers, or scripts when you don’t want

them to terminate after logging out.
●​ Protects the process from receiving the SIGHUP signal.

Syntax
nohup command [arguments] > output.log 2>&1 &

Example
nohup python3 myscript.py > myscript.log 2>&1 &

Explanation

1.​ nohup → Ignore hangup signal (keep process alive).
2.​ python3 myscript.py → Script being executed.
3.​ > → Redirect standard output.

4.​ myscript.log → File to store logs.
5.​ 2>&1 → Redirect error output (stderr) to the same file.
6.​ & → Run in background.

So even if you logout, the script keeps running.

Use Case

●​ Running servers, cron jobs, or long scripts remotely over SSH.

🔹 7. Foreground vs Background
Foreground process → Runs directly in terminal, blocks shell until it finishes.​
tar -czf backup.tar.gz /home/user

●​
●​ Background process → Add & to run without blocking shell.​

tar -czf backup.tar.gz /home/user &

Viewing and Resuming Jobs
See active jobs:​
jobs

Resume in background:​
bg %job_id

Resume in foreground:​
fg %job_id

jobs → List active jobs
bg → Resume stopped jobs in background
fg → Bring jobs to foreground
nice/renice → Manage process priority
nohup → Run processes immune to logout/terminal close

What is a Cron Job?
●​ Cron is a time-based job scheduler in Unix/Linux.​

●​ A cron job is a scheduled task that runs automatically at a specified time/date/interval.​

●​ Great for repetitive tasks: backups, cleanup, sending reports, restarting services, etc.​

Cron Syntax
A cron job is defined in the crontab (cron table). Each line follows this format:

* * * * * command-to-be-executed
- - - - -
| | | | |
| | | | +---- Day of week (0 - 7) (Sunday=0 or 7)
| | | +------ Month (1 - 12)
| | +-------- Day of month (1 - 31)
| +---------- Hour (0 - 23)
+------------ Minute (0 - 59)

So there are 5 time fields followed by the command.

🔹 How Cron Works
1. Cron Daemon

●​ Cron jobs are managed by a background service called the cron daemon (crond).
●​ The daemon runs continuously and wakes up every minute to check scheduled jobs.
●​ On most Linux systems, you can check if cron is running:
●​ A Cron Job is a scheduled task in Linux that runs automatically at a specific

time/date/interval.
●​ Managed by the cron daemon (crond).
●​ Common use cases: backups, log rotation, sending reports, running scripts at intervals.

systemctl status cron # Debian/Ubuntu

systemctl status crond # RedHat/CentOS/Fedora

“A cron job is a scheduled task that runs automatically at defined times using the cron daemon.”
“The cron syntax has 5 fields: minute, hour, day of month, month, day of week.”
“I use crontab -e to add jobs, and common use cases are backups, monitoring scripts, log
rotation, and scheduled reports.”

Add your job, e.g.:

0 3 * * * /home/user/backup.sh
(Runs every day at 3 AM)

Command Description

crontab -e Edit crontab file (create/modify cron jobs).

crontab -l List user’s cron jobs.

crontab -r Remove all cron jobs for the user.

crontab -u <user> -l List jobs for another user (root only).

Cron Expression Examples

Expression Meaning

* * * * * Run every minute.

0 * * * * Run at start of every hour.

30 5 * * * Run daily at 5:30 AM.

0 0 1 * * Run on 1st day of every month at midnight.

0 9 * * 1-5 Run at 9 AM on weekdays (Mon–Fri).

*/10 * * * * Run every 10 minutes.

0 2 * * 0 Run every Sunday at 2 AM.

Instead of writing long expressions, cron supports special strings:

Special String Meaning

http://backup.sh

@reboot Run once after reboot.

@yearly or @annually Run once a year (Jan 1 at 00:00).

@monthly Run once a month (1st day, 00:00).

@weekly Run once a week (Sunday, 00:00).

@daily or @midnight Run once a day (00:00).

@hourly Run once an hour.

●​ Cron is a time-based scheduler running as a daemon.
●​ It checks user/system crontabs every minute.
●​ Executes commands whose schedule matches the current time.
●​ Runs commands in a minimal environment, handles output via email or log files

Crontab Commands
●​ Open crontab for current user: crontab -e
●​ List cron jobs: crontab -l
●​ Remove all cron jobs: crontab -r

1. Run a script every day at 5:30 AM

Eg. 30 5 * * * /home/user/backup.sh

●​ 30 = minute (30th)
●​ 5 = hour (5 AM)
●​ * * * = every day, month, week

Use case: Daily database backup

2. Run a script every 10 minutes

Eg. */10 * * * * /home/user/cleanup.sh

●​ */10 = every 10 minutes
●​ Other fields * = every hour/day/month/week

✅ Use case: Cleanup temp files regularly.

3. Run at midnight on the first day of every month
Eg. 0 0 1 * * /home/user/report.sh
✅ Use case: Generate monthly repo

4. Run script only on Sundays at 2 AM
Eg. 0 2 * * 0 /home/user/sunday_task.sh

0 = Sunday (can also use 7)

✅ Use case: Weekly log rotation.

5. Run every weekday (Mon–Fri) at 9 AM

Eg. 0 9 * * 1-5 /home/user/start.sh

1-5 = Monday to Friday

✅ Use case: Start workday services.

6. Run script at reboot
Eg. @reboot /home/user/startup.sh

✅ Use case: Start a service automatically when system reboots.

at command in Linux, which is used to schedule tasks to run once at a specific time.

Linux at Command – Schedule Task to Run Once

1. What is the at command?

●​ The at command schedules a command or script to run once at a specific future time.
●​ Unlike cron, it does not repeat the task.
●​ Requires the atd daemon to be running (similar to cron daemon).

Check if atd is running:

systemctl status atd # RedHat/CentOS/Fedora

systemctl status at # Debian/Ubuntu

2. Install at (if not installed)

sudo apt install at # Debian/Ubuntu

sudo yum install at # RedHat/CentOS

3. Syntax

http://startup.sh

at [TIME] [OPTIONS]

[TIME] can be in formats like:

●​ HH:MM → 24-hour format today
●​ HH:MM YYYY-MM-DD → exact date and time
●​ now + 5 minutes → relative time
●​ tomorrow, noon, midnight, teatime

4. Common Options

Option Description

-l or q List pending at jobs.

-d or -r Remove/cancel a scheduled at job.

-f <file> Schedule commands from a file.

5. Practical Examples

Example 1: Run a script at a specific time

at 23:30

at> /home/user/backup.sh

at> <EOT> # Press Ctrl+D to end input

explanation:

at 23:30 → Schedule job for 11:30 PM today

/home/user/backup.sh → Command to run

<EOT> → End of input (Ctrl+D)

Example 2: Run a command in 5 minutes

at now + 5 minutes

at> echo "Backup started" >> /home/user/backup.log

at> <EOT>

Runs the command exactly 5 minutes from now

Example 3: Run commands from a file

Create a file tasks.txt:

#!/bin/bash

echo "Task started" >> /home/user/task.log

/home/user/script.sh

Schedule it:

at -f tasks.txt 22:00

●​ Runs the commands in tasks.txt at 10 PM.

6. Check Scheduled Jobs

atq

Lists all pending jobs for the current user.

7. Remove a Scheduled Job

atrm <job_id>

job_id comes from atq.

9. Difference Between cron and at

Feature cron at

Runs Repeatedly Once

Scheduling Time intervals, recurring Specific time/date

Daemon crond atd

Use case Daily backups, recurring tasks One-time scripts or commands

“I use at when I need a command to run only once at a specified future time, and cron for repeating tasks.
atschedules jobs via the atd daemon, and pending jobs can be listed with atq and removed with atrm.”

Linux Anacron – Schedule Tasks on Your
Terms
1. What is Anacron?

●​ Anacron is used to schedule periodic tasks, just like cron.
●​ Key difference: Anacron does not assume the system is running continuously.
●​ If a scheduled job was missed (e.g., system was powered off), Anacron runs the job as soon as the system is

back online.
●​ Perfect for laptops, desktops, or servers that are not 24/7.
●​ Anacron is a Linux utility that allows you to schedule commands periodically, similar to cron, but with one big

difference:​
It does not require the system to be running continuously.

●​ If your system is shut down when a scheduled job should have run, Anacron ensures that the job runs as soon
as the system is back online.

●​ This makes it crucial for laptops, desktops, and systems with downtime, unlike cron, which is best suited for
servers that are always on.

💡 Example:​
If you set a daily backup with cron at 2 AM but your laptop is off, it will never run. With Anacron, the backup will execute
the next time you boot up.

💡 In simple words:

●​ Cron → assumes system is always running (missed jobs are lost).
●​ Anacron → ensures jobs run at least once, even if delayed.

2. Where are Anacron Jobs Defined?

●​ Anacron jobs are typically defined in:
○​ /etc/anacrontab (main configuration file)
○​ /etc/cron.daily/, /etc/cron.weekly/, /etc/cron.monthly/ (called by Anacron automatically)

3. Syntax of /etc/anacrontab

Each line follows this format:

period delay job-identifier command

●​ period → how often the job runs (in days).
○​ 1 = daily
○​ 7 = weekly
○​ 30 = monthly

●​ delay → number of minutes to wait after Anacron starts before running the job.
●​ job-identifier → unique name for the job (for logging).

●​ command → actual command/script to execute.

4. Example /etc/anacrontab

period delay identifier command

1 5 cron.daily run-parts /etc/cron.daily

7 10 cron.weekly run-parts /etc/cron.weekly

30 15 cron.monthly run-parts /etc/cron.monthly

Explanation:

●​ 1 5 cron.daily → Run all scripts in /etc/cron.daily once per day, wait 5 minutes after startup.
●​ 7 10 cron.weekly → Run weekly jobs 10 minutes after startup.
●​ 30 15 cron.monthly → Run monthly jobs 15 minutes after startup.

5. Creating a Custom Anacron Job

Suppose you want to run a backup script daily:

1 7 backupjob /home/user/backup.sh

●​ Runs /home/user/backup.sh once a day.
●​ Starts 7 minutes after system boot.

6. Running Anacron Manually

anacron -n # Run jobs immediately, ignore delays

anacron -d # Run in foreground (debug mode)

anacron -s # Run jobs sequentially

7. Use Cases of Anacron

●​ Laptop users (system not always on).

●​ Desktops (powered off at night).
●​ Servers with scheduled downtime.

Anacron is like cron but designed for machines that are not always on. It ensures jobs run at least once
within a given period (daily, weekly, monthly), even if they were missed during downtime. Jobs are defined
in /etc/anacrontab, with fields for frequency, delay, identifier, and command. For example, 1 5 myjob
/home/user/script.sh means run the script once daily, 5 minutes after system startup.”

Configuring Anacron
1. Anacrontab File

●​ Location: /etc/anacrontab

Format:​
period delay job-identifier command

●​
○​ period: How often to run (in days: 1 = daily, 7 = weekly, 30 = monthly).
○​ delay: Delay in minutes after startup before job runs.
○​ job-identifier: Unique name for the job (for logs).
○​ command: Script or command to execute.

2. Example /etc/anacrontab

period delay job-id command

1 5 cron.daily run-parts /etc/cron.daily

7 10 cron.weekly run-parts /etc/cron.weekly

30 15 cron.monthly run-parts /etc/cron.monthly

3. Adding a Custom Job

Example: Run a backup script once a day, 7 minutes after boot:

1 7 backupjob /home/user/backup.sh

✅ Backups – Schedule daily/weekly backups on laptops.​
✅ System Updates – Ensure updates run even if PC wasn’t on at scheduled time.​
✅ Log Rotation – Maintain logs regularly without missing cycles.​
✅ Database Maintenance – Run DB cleanup or reindex jobs periodically.​
✅ File Synchronization – Daily syncing of files to cloud storage.

💡 Real-world Example:

7 15 weeklycleanup /home/user/scripts/cleanup.sh

Runs the cleanup script once a week, 15 minutes after boot.

1. What is ping?

●​ ping is a simple network diagnostic tool.
●​ It sends ICMP Echo Request packets to a target host and waits for ICMP Echo Reply.
●​ Purpose:

○​ Check if a host (server, website, or device) is reachable.
○​ Measure latency (round-trip time) between your machine and the target.
○​ Detect packet loss and network reliability.

💡 In simple words: ping asks, “Are you alive and how fast can I reach you?”

. Syntax

ping [OPTIONS] destination

●​ destination = hostname or IP (e.g., google.com or 8.8.8.8).

Option Meaning

-c <count> Send a fixed number of packets (e.g., -c 4).

-i <interval> Time gap between packets (default = 1 second).

-W <timeout> Timeout in seconds to wait for a reply.

-s <size> Packet size in bytes (test MTU issues).

-q Quiet output (summary only).

-f Flood ping (stress test, root only).

. Practical Examples

✅ Example 1: Basic Connectivity Test

ping google.com

●​ Sends continuous packets to google.com.
●​ Output shows reply times, packet loss, TTL (time-to-live).

✅ Example 2: Limit Number of Pings

ping -c 4 8.8.8.8

●​ Sends 4 packets to Google’s DNS server (8.8.8.8).
●​ Commonly used for quick checks.

✅ Example 3: Test Latency Between Hosts

ping -c 5 server.example.com

●​ Measures round-trip time.
●​ Useful to compare latency between different servers.

✅ Example 4: Detect Packet Loss

ping -c 10 google.com

●​ Output includes % packet loss.
●​ High packet loss = network congestion or faulty link.

✅ Example 5: Set Packet Size

ping -s 1000 google.com

Sends packets with 1000-byte payload.

Helps test for fragmentation or MTU issues.

✅ Example 6: Timeout for Response

ping -W 2 google.com

Waits 2 seconds max for a reply before declaring timeout.

“ping is a Linux network diagnostic tool that uses ICMP packets to check if a host is reachable, measure latency, and detect packet
loss. For example, ping -c 4 google.com sends 4 echo requests and shows round-trip times. It’s often used to troubleshoot
connectivity, DNS resolution, or network reliability issues.”

1. What is Netstat?
The netstat command in Linux is used to display network connections, routing tables, interface statistics,
masquerade connections, and multicast memberships.
It’s an old but still widely used tool for diagnosing network issues and checking which processes are using which
ports.

●​ netstat (network statistics) is a Linux/Unix command-line tool to monitor:
○​ Network connections (incoming & outgoing)
○​ Routing tables
○​ Interface statistics
○​ Open ports and services

It tells you what ports are open, which connections are active, and how traffic flows.

Command Description

netstat -a Shows all connections (listening + established).

netstat -t Shows TCP connections only.

netstat -u Shows UDP connections only.

netstat -l Shows only listening ports.

netstat -p Shows process ID (PID) and program name using each socket.

netstat -n Shows addresses and ports as numbers (no DNS lookup).

netstat -r Displays the routing table.

netstat -i Shows network interface statistics.

netstat -s Displays per-protocol statistics (TCP, UDP, ICMP, etc.).

2. Basic Syntax
netstat [options]

Linux Netstat Commands — Cheatsheet

1. Show all active connections
Syntax:​
netstat -a
Example:​
netstat -a

●​ Explanation: Shows every socket → listening + established + closing.
●​ Description: Full view of network activity.
●​ Use Case: Quick check of all open/active connections.

2. Show only TCP connections

Syntax:​
netstat -t
Example:​
netstat -t

●​ Explanation: Displays all TCP connections (web, SSH, DB).
●​ Description: Filters for TCP only.
●​ Use Case: Monitor TCP-heavy apps like HTTP/HTTPS, MySQL, SSH.

3. Show only UDP connections
Syntax:​
netstat -u
Example:​
netstat -u

●​ Explanation: Displays UDP connections (no handshake, faster).
●​ Description: Filters for UDP only.
●​ Use Case: Check DNS, DHCP, VoIP, streaming.

4. Show only listening ports
Syntax:​
netstat -l
Example:​
netstat -l

●​ Explanation: Lists services actively waiting for new connections.
●​ Description: Focus on listening sockets.
●​ Use Case: Verify if server services are running (e.g., SSH on port 22).

5. Show numeric IP/port (skip DNS lookups)
Syntax:​
netstat -n
Example:​
netstat -an

●​ Explanation: Displays raw IPs and port numbers instead of hostnames.
●​ Description: Faster output (no name resolution).
●​ Use Case: Script-friendly and avoids DNS delays.

6. Show process ID (PID) & program
Syntax:​
sudo netstat -p
Example:​
sudo netstat -tulnp | grep 8080

●​ Explanation: Shows which process/program is using port 8080.
●​ Description: Maps open ports to processes.
●​ Use Case: Resolve “port already in use” issues.

7. Show all listening ports with process info
Syntax:​
sudo netstat -tulnp
Example:​
sudo netstat -tulnp

●​ Explanation: Lists all listening TCP/UDP ports + process IDs.
●​ Description: Most powerful & common combo.
●​ Use Case: Audit server services, detect unauthorized apps.

8. Show routing table
Syntax:​
netstat -r
Example:​
netstat -rn

●​ Explanation: Displays kernel routing table (like route -n).
●​ Description: Shows gateways, destinations, masks.
●​ Use Case: Debug routing issues, ensure correct gateway.

9. Show network interface stats
Syntax:​
netstat -i
Example:​
netstat -i

●​ Explanation: Displays packet counts, errors, drops per interface.
●​ Description: NIC-level statistics.
●​ Use Case: Check for faulty NIC/drivers or packet loss.

10. Show statistics by protocol
Syntax:​
netstat -s
Example:​
netstat -s

●​ Explanation: Shows protocol stats (TCP retransmissions, UDP errors).
●​ Description: Protocol-level breakdown.
●​ Use Case: Debug protocol issues (e.g., TCP packet drops).

11. Count number of connections on a port
Syntax:​
netstat -an | grep :<port> | wc -l

●​

Example:​
netstat -an | grep :80 | wc -l

●​ Explanation: Counts total connections to port 80 (HTTP).
●​ Description: Filter by port + count.
●​ Use Case: Detect traffic spikes, check load or DDoS.

12. Show established connections only
Syntax:​
netstat -an | grep ESTABLISHED
Example:​
netstat -an | grep ESTABLISHED

●​ Explanation: Shows only active connections.
●​ Description: Filters for ESTABLISHED state.
●​ Use Case: Monitor real-time connected clients.

Each port = door of the hotel.

●​ netstat = CCTV camera → shows:

○​ Which doors (ports) are open.

○​ Which guests (clients/IPs) came in.

○​ How many guests are sitting inside (connections).

○​ Which staff member (process) opened which door.

Real-World Use Cases (Interview Friendly)
●​ Open port issue:​

App won’t start → use netstat -tulnp | grep <port> to find what’s blocking it.
●​ Network troubleshooting:​

Too many dropped packets on netstat -i → check NIC/driver issues.
●​ Security check:​

See what services are exposed → netstat -tulpn.
●​ Performance monitoring:​

Count number of connections per service → netstat -tn | grep :443 | wc -l.

What is Traceroute?

●​ traceroute is a network diagnostic tool in Linux/Unix.
●​ It shows the path packets take from your machine to a destination (like google.com).
●​ Helps in identifying where the delay or failure occurs in the route.

🔹 How Does Traceroute Work?
1.​ traceroute sends packets (UDP, ICMP, or TCP) with gradually increasing TTL (Time To Live) values.
2.​ Each router in the path decrements the TTL by 1.
3.​ When TTL = 0, the router returns an ICMP Time Exceeded message.
4.​ By collecting these messages, traceroute maps the path and response times of each hop.

5.​ traceroute is a network diagnostic tool used to trace the path packets take from your computer to a destination
(IP/hostname).

6.​ Helps detect:

a.​ Where latency occurs

b.​ Which routers/firewalls may be dropping packets

c.​ Route taken by network traffic

Example explanation for interview:​
"Traceroute works like a map of the internet path between your machine and the destination, showing each hop and its
response time."

How Traceroute Works
1.​ Traceroute sends packets (UDP by default, ICMP/TCP optionally) with Time-To-Live (TTL) starting at 1.
2.​ Each router decreases TTL by 1.
3.​ When TTL = 0, the router responds with ICMP Time Exceeded.
4.​ Traceroute increases TTL step by step, mapping each hop.

Visual analogy:

●​ Your packet is a postcard; each router reads it and says, “I got it in X ms,” until it reaches the final destination

🔹 Syntax
traceroute [options] <destination> [packet_size]

●​ <destination> → hostname or IP (e.g., google.com, 8.8.8.8)
●​ [packet_size] → optional, size of packets to send

Change Packet Length (Size)
●​ Use the last argument for packet size (default = 60 bytes)

traceroute -n -q 3 -w 2 google.com 100

●​ Here 100 → packet size in bytes
●​ Options explanation:

○​ -n → numeric IPs (no DNS)
○​ -q 3 → 3 queries per hop
○​ -w 2 → wait 2 seconds for a reply

Use case: Test larger packet sizes to detect MTU issues in the network.

5. Change Number of Probes per Hop
●​ Default is 3 probes per hop
●​ Option: -q <number>

traceroute -q 5 google.com

●​ Sends 5 probes per hop instead of 3
●​ Use case: More probes → better measurement of latency variation per hop.

6. Specify Destination Port
●​ By default, traceroute uses UDP ports 33434+
●​ Change port with -p

traceroute -T -p 80 google.com

●​ Explanation:
○​ -T → use TCP instead of UDP
○​ -p 80 → send TCP SYN to port 80 (HTTP)

●​ Use case: Some networks block UDP; TCP/port-specific traceroute bypasses that.

7. Use IPv4 or IPv6
●​ IPv4 (default):

traceroute -4 google.com

●​ IPv6:

traceroute -6 ipv6.google.com

●​ Use case: Test routes in dual-stack networks; verify if IPv6 connectivity works.

8. Route Through a Specific Gateway
●​ Use -g <gateway> to force traceroute through a specific gateway (source routing).

traceroute -g 192.168.1.1 google.com

●​ Explanation: Packet will go via 192.168.1.1 first.
●​ Use case: Test specific ISP path, VPN routing, or troubleshoot multi-homed networks.

9. Quick Examples
1.​ Basic traceroute:

traceroute google.com

2.​ Numeric IP + larger packet:

traceroute -n google.com 120

3.​ TCP port 443 (HTTPS):

traceroute -T -p 443 google.com

4.​ IPv6 traceroute:

traceroute -6 ipv6.google.com

5.​ 5 probes per hop:

traceroute -q 5 google.com

Core Difference
●​ su ("substitute user")

○​ Switches your shell to another user account.
○​ Requires the target user’s password (e.g., root’s password).
○​ Gives you a full session as that user until you exit.

●​ sudo ("superuser do")
○​ Runs a single command as another user (default = root).
○​ Requires your own password, provided you are authorized in /etc/sudoers.
○​ After the command finishes, you’re back as yourself.

1. Difference Between su and sudo

Command Meaning Example Use Case

su Switch User → Opens a shell as
another user (default = root) after
entering that user’s password.

su - → switch to
root user

When you want to become
another user for a long
session (root or service
account).

sudo SuperUser Do → Runs a single
command with elevated privileges
after entering your own password.

sudo apt update When you want to run just
one or few commands as
root/admin without fully
switching.

su = become another user.

sudo = run a command as another user (default = root).

Aspect su sudo

Authentic
ation

Needs the password of the target
user (e.g., root).

Needs your own password if listed in
/etc/sudoers.

Scope Opens a new shell session as that
user. You stay root (or other user)
until exit.

Runs only one command with
elevated privileges. Then returns to
your session.

Default
target

Root (su - = root login shell). Root (sudo command = run as root).

Security
model

Everyone who needs root access
must know the root password.

Users can be given granular access
(some commands only, not full root).

Auditing Harder to track, because once
switched, all actions are by root.

Every sudo command is logged
(/var/log/auth.log), showing who
ran what.

Usage
style

Long administrative sessions as
root.

Quick administrative actions without
fully switching.

1. What is SSH?
SSH (Secure Shell) is a protocol used to securely connect to remote systems (like Linux servers) over a network.

SSH stands for Secure Shell — it’s a protocol used in Linux (and other systems) to securely connect to and control remote
computers over a network.

It encrypts all communication between your machine (the client) and the remote server (the host), protecting passwords,
commands, and data from eavesdropping.

●​ It encrypts communication (unlike old telnet or rlogin which send passwords in plain text).
●​ Provides confidentiality (encryption), integrity (no tampering), and authentication (verify who you are).
●​ Commonly used for:

○​ Remote login to servers
○​ Executing commands remotely
○​ File transfers (via scp or sftp)
○​ Tunneling/port forwarding

2. Why it is called SSH?
●​ SSH = Secure Shell
●​ Called so because:

○​ It provides a shell (command-line interface) to interact with a remote machine.
○​ It’s secure because all traffic (passwords, commands, outputs) is encrypted.

🔑 3. Basics of SSH
●​ Default port: 22
●​ Authentication methods:

○​ Password-based → enter your password to log in.
○​ Key-based → use a pair of SSH keys (id_rsa private, id_rsa.pub public).

●​ Config files:
○​ /etc/ssh/sshd_config → SSH server configuration
○​ ~/.ssh/known_hosts → stores fingerprints of servers you connected to
○​ ~/.ssh/id_rsa & ~/.ssh/id_rsa.pub → your private/public keys

Example of SSH
Connect to server at 192.168.1.100 as user 'swapnil'

ssh swapnil@192.168.1.100

Connect using custom port (say 2222)

ssh -p 2222 swapnil@192.168.1.100

Connect using private key

ssh -i ~/.ssh/mykey.pem swapnil@192.168.1.100

6. Access Linux Server using PuTTY (Windows)
PuTTY is a popular SSH client for Windows.​
Steps:

1.​ Download & install PuTTY.

Open PuTTY → In Host Name, enter:​
username@server_ip

2.​ or just server_ip and specify username after connection.
3.​ Default port is 22.
4.​ Click Open.
5.​ Enter username & password (or load private key .ppk if using key-based login).

6.​ SSH = Secure Shell protocol for safe remote login.

7.​ Called SSH because it provides a secure shell.

8.​ Basics: port 22, password or key auth, encrypted communication.

9.​ Usage: ssh user@server_ip.

10.​On Windows: use PuTTY.

11.​From another Linux server: same ssh command works.

What is a Firewall in Linux?

●​ A firewall is a network security layer that controls traffic (inbound/outbound) based on rules.
●​ It protects servers from unauthorized access, malware, and DDoS attacks.
●​ Works at packet level (network layer).

2. Why do we need Firewall?

●​ To allow trusted traffic (e.g., SSH, web ports).
●​ To block/deny untrusted traffic (e.g., unknown IPs, unused ports).
●​ To enforce least privilege principle (only necessary ports open).
●​ To improve security posture of servers.

SUID/SGID

“In Linux, apart from normal read, write, and execute permissions, we also have special permissions called SUID and
SGID.

In Linux, every file has permissions for user, group, and others. Normally, when a program runs, it runs with the
permissions of the user who executed it.​

But sometimes, we need a program to run with the permissions of the file owner (not the user). That’s where SUID and
SGID come in.

SUID, or Set User ID, means when a file is executed, it runs with the privileges of the file owner instead of the user who
runs it. A common example is the /usr/bin/passwd command. Even though a normal user runs it, it needs root privileges
to update /etc/shadow, so it has the SUID bit set.

What is SUID?
●​ SUID (Set User ID) is a special permission in Linux.
●​ When applied to an executable file:

○​ The program runs with the file owner’s privileges, not the privileges of the user who runs it.
●​ Commonly used when normal users need temporary elevated permissions to run a program.

 Example of SUID

ls -l /usr/bin/passwd

You’ll see something like:

-rwsr-xr-x 1 root root 54256 Aug 1 /usr/bin/passwd

Notice the s in the user (owner) permissions → that’s SUID.

●​ passwd command needs to modify /etc/shadow (owned by root).
●​ Even when a normal user runs passwd, it executes with root privileges because of SUID.

 What is SGID?
●​ SGID (Set Group ID) works similarly but for groups.
●​ When applied to:

1.​ Executable file → the program runs with the group privileges of the file.
2.​ Directory → any file created inside inherits the group ownership of the directory, not of the user’s

default group.

🔹 Example of SGID (on directory)

sudo mkdir /shared

sudo chgrp developers /shared

sudo chmod 2775 /shared

●​ The 2 in 2775 sets SGID on the directory.
●​ Now, any file created in /shared will automatically belong to the developers group.
●​ This ensures collaboration without changing user’s default group.

SGID, or Set Group ID, works in two ways:

●​ On an executable file, it runs with the file’s group privileges.
●​ On a directory, it ensures that all new files created inside automatically inherit the group ownership of that

directory. This is commonly used in shared directories, for example, a developers group working in /shared.

So in short, SUID gives temporary owner’s power to the user, and SGID ensures group-based collaboration or execution
with group rights.”

●​ SUID: Runs a file with owner’s permissions (example: /usr/bin/passwd).
●​ SGID: Runs a file with group’s permissions; on directories, new files inherit the directory’s group (useful for

shared project folders).

🔹 What is Sticky Bit?
●​ The Sticky Bit is another special permission in Linux.
●​ When set on a directory, it means:

○​ Users can create files inside the directory (if they have write permission).
○​ But they can only delete or rename their own files, not files owned by others.

👉 This prevents users from deleting each other’s files in shared directories.

The Sticky Bit is a special permission in Linux, mainly used on directories. It allows all users to create files
inside the directory, but only the file’s owner or root can delete or rename them. A common example is
/tmp, where every user can create temporary files but cannot delete each other’s files. You can identify it
by the ‘t’ at the end of permissions, and set it using chmod +t.”

What is UMASK?
●​ UMASK (User File Creation Mask) is a setting in Linux that defines the default permission bits for newly created

files and directories.
●​ Instead of directly specifying permissions, it acts like a filter (mask) that subtracts permissions from the system’s

default.

“UMASK in Linux defines the default permissions for newly created files and directories. Files normally
start with 666 and directories with 777, and UMASK subtracts permissions from this. For example, with
UMASK 022, new files get 644 (rw-r--r--) and directories get 755 (rwxr-xr-x). You can check it with
umask, change it temporarily using umask value, and make it permanent by adding the setting in shell
profile files.”

Linux chown and chgrp Commands

🔹 1. Ownership in Linux
Every file in Linux has two types of ownership:

●​ User (owner) → usually the person who created the file.

●​ Group → a set of users who share access to the file.

🔹 2. chown (Change Owner)
●​ Used to change the user ownership (and optionally group ownership) of a file or directory.

Syntax:

chown [options] new_owner filename

Examples:

Change owner to 'swapnil'

sudo chown swapnil file.txt

Change both owner and group

sudo chown swapnil:developers project.log

Recursively change owner/group for a directory

sudo chown -R swapnil:developers /project

🔹 3. chgrp (Change Group)
●​ Used only to change the group ownership of a file or directory.

Syntax:

chgrp [options] new_group filename

Examples:

Change group to 'developers'

sudo chgrp developers file.txt

Recursively change group

sudo chgrp -R developers /project

🔹 4. Difference between chown and chgrp
●​ chown → can change both owner and group.
●​ chgrp → changes only the group.
●​ In fact, chgrp is basically a shortcut; you can achieve the same with chown :group file.

🔹 5. Interview-Ready Summary
“In Linux, every file has a user and group owner. The chown command changes the file’s user ownership,
and optionally its group ownership, while the chgrp command changes only the group. For example,
chown swapnil:developers file.txt changes both owner and group, while chgrp developers
file.txt only changes the group. Both support -R to apply changes recursively.”

Log files are automatically generated computer files that contain
records of events, operations, and activities within a system,
application, or device, such as timestamps, errors, and user actions.
They serve as a historical record to track performance, diagnose
problems, and investigate security incidents. Log files are crucial for
understanding system behavior and are generated by operating
systems, servers, applications, and other devices.

in Linux, log files are system-generated text files that record activities, events,
and messages from the operating system, services, and applications. They are
extremely important for troubleshooting, auditing, and monitoring system
behavior.

🔹 What are Log Files?

●​ A log file is like a diary of the system — it keeps track of what’s happening.
●​ Logs may include:

○​ User login attempts
○​ Errors
○​ Security events
○​ Application behavior
○​ Kernel/system messages

●​ By reading logs, an administrator can find out what went wrong and when.

What is Log Monitoring in Linux?

●​ Log monitoring means continuously checking system/application log files
to detect issues, security breaches, or abnormal behavior.

●​ Since logs contain critical information, monitoring them helps proactive
troubleshooting instead of waiting for failures.

🔹 Why is Log Monitoring Important?

1.​ Detect security issues → Failed login attempts, unauthorized access.
2.​ Identify system errors → Hardware failures, kernel panics.
3.​ Monitor application performance → Web servers, databases.
4.​ Ensure compliance/auditing → Legal or regulatory requirements.

1. Basic Commands

●​ tail -f /var/log/syslog → Real-time monitoring of system log.
●​ less /var/log/auth.log → Search inside authentication logs.
●​ grep "Failed" /var/log/auth.log → Find failed login attempts.
●​ journalctl -xe → View logs managed by systemd journal.

Log monitoring in Linux means keeping track of log files in /var/log/ to detect
errors, security issues, and performance problems. I usually use tail -f,
journalctl, and grep for real-time analysis. For automation, I configure
logrotate to manage log sizes and sometimes use logwatch for daily reports. In
enterprise environments, centralized solutions like ELK stack or Splunk are
preferred for large-scale monitoring."

What is dmesg?

●​ dmesg stands for “diagnostic message”.
●​ It prints the kernel ring buffer, which contains system messages related to

hardware, drivers, and boot processes.
●​ Useful for monitoring hardware events, detecting device errors, and

troubleshooting boot issues.

🔹 Why Use dmesg?

●​ Detect hardware issues: disks, USB devices, network cards.
●​ Check driver/module loading: kernel modules during boot.
●​ Monitor boot messages: errors, warnings, or kernel panics.
●​ Troubleshoot system crashes or freezes.

“The dmesg command in Linux reads the kernel ring buffer, which
contains messages about hardware, drivers, and system events. It’s
commonly used to monitor system hardware, check driver load status,
or troubleshoot boot and device issues. For example, dmesg | grep
-i usb shows messages related to USB devices, and dmesg
-Tconverts timestamps to readable format. For live monitoring, dmesg
--follow can be used.”

What is Logrotate?

●​ Logrotate is a Linux utility that manages log files automatically.
●​ It prevents logs from consuming too much disk space by:

○​ Rotating (archiving old logs)
○​ Compressing logs
○​ Deleting old logs
○​ Mailing logs to admins

●​ Runs automatically via cron job (usually daily).

🔹 Why Logrotate is Needed?

●​ Log files in /var/log/ keep growing → can fill up disk space.
●​ Old logs are rarely needed daily, so archiving them is better.
●​ Keeps system logs organized, small, and easy to manage.

🔹 Default Location

●​ Global config: /etc/logrotate.conf
●​ Service-specific configs: /etc/logrotate.d/

Running Logrotate Manually

Test config

logrotate -d /etc/logrotate.conf

Force rotation

logrotate -f /etc/logrotate.conf

Logrotate is a Linux utility that automatically manages log files by rotating,
compressing, and deleting old logs. It prevents logs from consuming disk space
and keeps them organized. For example, I can configure
/etc/logrotate.d/httpd to rotate Apache logs daily, keep 7 backups, and
compress old ones. It runs automatically via cron, but I can also trigger it
manually using logrotate -f.”

What is rsync?

●​ rsync = Remote Synchronization.
●​ A command-line tool for copying and synchronizing files/directories

between:
○​ Local → Local
○​ Local → Remote
○​ Remote → Local

●​ It copies only the differences (deltas) instead of full files → makes it fast &
efficient.

🔹 Why Use rsync?

●​ Faster than scp or cp (copies only changed parts).
●​ Preserves file permissions, ownership, and timestamps.
●​ Supports compression during transfer.
●​ Can delete files on destination if deleted on source (for exact sync).
●​ Can run over SSH → secure transfers.

Basic Syntax

rsync [options] source destination

🔹 Common Options

●​ -a → Archive mode (preserves permissions, symlinks, etc.).
●​ -v → Verbose (detailed output).
●​ -z → Compress data during transfer.
●​ -h → Human-readable sizes.
●​ --delete → Remove files from destination if not in source.
●​ -e ssh → Use SSH for secure transfer.

Examples

1. Copy a file locally

rsync -avh /home/user/file.txt /backup/

👉 Copies file.txt to /backup/ with attributes preserved.

2. Copy a directory to another server

rsync -avz /home/user/ user@192.168.1.10:/backup/

👉 Syncs /home/user/ to /backup/ on remote server securely via SSH.

 3. Sync from remote server to local

rsync -avz user@192.168.1.10:/var/log/ /home/user/logs/

Downloads logs from remote server.

Real-World Use Cases

1.​ Server Backups → Copy /etc/ or /var/log/ to backup server.
2.​ Website Deployment → Sync website code to production.
3.​ Log Collection → Pull logs from multiple servers.
4.​ Incremental Backups → Faster because only changes are transferred.

 Interview-Ready Explanation

👉 “Rsync is a Linux utility for synchronizing files and directories locally or
remotely. Unlike scp, it copies only changes, which makes it efficient. For
example, I can run rsync -avz /home/user/ user@server:/backup/ to sync
my local home directory to a server over SSH. It preserves file permissions and
supports options like --delete to mirror directories and --dry-run to test
before running. It’s commonly used for backups and deployments.”

What is Linux Hardening?

●​ Linux Hardening = applying security measures to reduce vulnerabilities
and protect the system from attacks.

●​ Goal: Make the system more secure, less exploitable, and compliant with
policies.

Linux awk Command

awk is a powerful text-processing command. It works line by line and divides
each line into fields (default separator is whitespace).

Syntax

awk 'pattern { action }' filename

●​ pattern → what to search for
●​ action → what to do when the pattern matches

Examples

1.​ Print entire file:

awk '{print}' file.txt

2.​ Print only the first column:

awk '{print $1}' file.txt

3.​ Print first and third column:

awk '{print $1, $3}' file.txt

4.​ Filter lines where column 2 equals "swapnil":

awk '$2 == "swapnil" {print $0}' file.txt

5.​ Use custom delimiter (e.g., : in /etc/passwd):

awk -F: '{print $1, $7}' /etc/passwd

Linux cut Command

cut extracts specific columns or fields from text.

Syntax

cut OPTION... [FILE]

Options

●​ -c → select by character position
●​ -f → select by field number
●​ -d → specify delimiter

Examples

1.​ Extract first 5 characters from each line:

cut -c1-5 file.txt

2.​ Extract 2nd and 4th fields (delimiter :):

cut -d: -f2,4 /etc/passwd

3.​ Show only first field (like username from /etc/passwd):

cut -d: -f1 /etc/passwd

4.​ Extract characters from 3rd to 7th position:

cut -c3-7 file.txt

AWK vs CUT
Feature awk cut

Power More powerful (supports conditions,
loops, formatting)

Simple extraction

Delimiter Default = whitespace (can change with
-F)

Must specify with -d (default
TAB)

Use cases Filtering, reporting, text formatting Quick field/column extraction

Example awk -F: '{print $1,$7}'
/etc/passwd

cut -d: -f1,7 /etc/passwd

	🔹 1. jobs Command
	Theory
	Syntax
	Example
	Explanation
	Use Case

	🔹 2. bg Command
	Theory
	Syntax
	Example
	Explanation
	Use Case

	🔹 3. fg Command
	Theory
	Syntax
	Example
	Explanation
	Use Case

	🔹 4. nice Command
	Theory
	Syntax
	Example
	Explanation
	Use Case

	🔹 5. renice Command
	Theory
	Syntax
	Example
	Explanation
	Use Case

	🔹 6. nohup Command
	Theory
	Syntax
	Example
	Explanation
	Use Case

	🔹 7. Foreground vs Background
	Viewing and Resuming Jobs

	What is a Cron Job?
	🔹 How Cron Works
	1. Cron Daemon
	
	Crontab Commands
	1. Run a script every day at 5:30 AM
	3. Run at midnight on the first day of every month
	4. Run script only on Sundays at 2 AM
	6. Run script at reboot
	1. What is the at command?
	2. Install at (if not installed)
	3. Syntax
	5. Practical Examples
	Example 1: Run a script at a specific time
	Example 3: Run commands from a file

	
	6. Check Scheduled Jobs
	7. Remove a Scheduled Job
	9. Difference Between cron and at

	
	Linux Anacron – Schedule Tasks on Your Terms
	1. What is Anacron?
	2. Where are Anacron Jobs Defined?
	3. Syntax of /etc/anacrontab
	4. Example /etc/anacrontab
	5. Creating a Custom Anacron Job
	6. Running Anacron Manually
	7. Use Cases of Anacron
	Anacron is like cron but designed for machines that are not always on. It ensures jobs run at least once within a given period (daily, weekly, monthly), even if they were missed during downtime. Jobs are defined in /etc/anacrontab, with fields for frequency, delay, identifier, and command. For example, 1 5 myjob /home/user/script.sh means run the script once daily, 5 minutes after system startup.”
	Configuring Anacron
	1. Anacrontab File
	2. Example /etc/anacrontab

	✅ Backups – Schedule daily/weekly backups on laptops.​✅ System Updates – Ensure updates run even if PC wasn’t on at scheduled time.​✅ Log Rotation – Maintain logs regularly without missing cycles.​✅ Database Maintenance – Run DB cleanup or reindex jobs periodically.​✅ File Synchronization – Daily syncing of files to cloud storage.
	1. What is ping?
	. Syntax
	. Practical Examples
	✅ Example 1: Basic Connectivity Test
	✅ Example 2: Limit Number of Pings
	✅ Example 3: Test Latency Between Hosts
	✅ Example 4: Detect Packet Loss
	✅ Example 5: Set Packet Size

	1. What is Netstat?
	2. Basic Syntax

	Linux Netstat Commands — Cheatsheet
	1. Show all active connections
	2. Show only TCP connections
	3. Show only UDP connections
	4. Show only listening ports
	5. Show numeric IP/port (skip DNS lookups)
	6. Show process ID (PID) & program
	7. Show all listening ports with process info
	8. Show routing table
	9. Show network interface stats
	10. Show statistics by protocol
	11. Count number of connections on a port
	12. Show established connections only
	Real-World Use Cases (Interview Friendly)
	What is Traceroute?
	🔹 How Does Traceroute Work?
	How Traceroute Works
	🔹 Syntax
	Change Packet Length (Size)
	5. Change Number of Probes per Hop
	6. Specify Destination Port
	7. Use IPv4 or IPv6
	8. Route Through a Specific Gateway
	9. Quick Examples
	Core Difference
	1. Difference Between su and sudo
	1. What is SSH?
	2. Why it is called SSH?
	🔑 3. Basics of SSH
	Example of SSH
	6. Access Linux Server using PuTTY (Windows)
	What is a Firewall in Linux?
	2. Why do we need Firewall?
	 Example of SUID
	🔹 Example of SGID (on directory)

	🔹 What is Sticky Bit?
	What is UMASK?

	Linux chown and chgrp Commands
	🔹 1. Ownership in Linux
	🔹 2. chown (Change Owner)
	Syntax:
	Examples:

	🔹 3. chgrp (Change Group)
	Syntax:
	Examples:

	🔹 4. Difference between chown and chgrp
	🔹 5. Interview-Ready Summary
	🔹 What are Log Files?

	What is Log Monitoring in Linux?
	🔹 Why is Log Monitoring Important?
	1. Basic Commands

	What is dmesg?
	🔹 Why Use dmesg?
	What is Logrotate?
	🔹 Why Logrotate is Needed?
	🔹 Default Location
	Running Logrotate Manually
	What is rsync?
	🔹 Why Use rsync?
	Basic Syntax
	🔹 Common Options
	Examples
	1. Copy a file locally
	 3. Sync from remote server to local

	Real-World Use Cases
	What is Linux Hardening?
	Linux awk Command
	Syntax
	Examples

	Linux cut Command
	Syntax
	Options
	Examples

	AWK vs CUT

